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.-~ ABSTRAC T

Consider a single server exponential queueing loss system in

whicli the arrival and service rates alternate between the

pairs (A,~~i,~) and (A2,p 2
) , spending an exponential

amount of time with rate ccs~ in (X 1,ii .~) , i = 1,2 . It c~.

shown that if all arrivals finding the server busy are

lost then the percentage of arrivals lost is a decreasing

function of c . This is in line with a general conjecture

to the effect that the “~~re nonstationary”~~

Poisson arrival process is then the greater the average

customer delay (in infinite capacity models) or the greater

the percentage of lost customers (in finite capacity models).

We also study the limiting cases when c approaches 0 or

infinity 

/
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A HETEROGENEOUS ARRIVAL AND SERVICE QUEUEING LOSS MODEL

by

Simson Fond and Sheldon M. Ross

I-

0. INTRODUCTION

~1 ~~. This paper is a continuation of a study of queueing models with non—

stationary Poisson arrivals begun in [1], where it was conjectured , and

verified in a special case, that a queueing system with nonstationary

Poisson arrivals will lead to larger average customer delays than would

a similar model having stationary Poisson arrivals with the same average

arrival rate. In order to further investigate this conjecture we consider

a single server loss system that oscillates between two feasible levels

denoted by 1 and 2. When the system is at level i (1 = 1,2) the ai ival

process is a Poisson process with rate ) . and the service times are

exponential random variables with rate . The time interval during

which the system functions at level i is also an exponential random

variable with rate cci
i where c is a constant , i.e. the persistence

of the system at any level is governed by a random mechanism : if the system

is functioning at level I it tends “to jump” to the alternative level

with Poisson rate ccz~

We suppose that an arriving customer will only enter the system if

the server is free when he arrives. Let L(c) denote the proportion of

customers that are lost to the system . In the following section we show

tha t

L(c) is decreasing and convex in c 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It should be noted that the (time) average arrival and service rates,

call them ~ and ~ are given by

— 
X
1~

t
2 + X2ct1 — ‘l~2 

+ 
~2~l‘

U ..
cx1 + c &

2

and are thus independent of c . The purpose of the constant c is that

it regulates how fast the system changes levels; thus the larger c is

then in some sense “the more stationary the process is.” Indeed as c

approaches infinity the system converges to a stationary one.

_ _ _ _ _  _ _ _ _  _ _ _ _ _ _ _
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1. THE LOSS FUNCTION L(c)

The system can be analyzed as a continuous time Markov process with

states {(m,i) m = 0,1 and i — 1,2) , where m denotes the number

of customers in the system, and i denotes the level of the system. The

transition probabilities are stationary and satisfy the forward Kolmogorov

differential equations. Moreover, for all (m,i) , the limiting probabilities,

call them 
~mi 

exist and are independent of the initial state. The set

satisfies the following balance equations

(la) (A
1 
+ ccz

1
)P01 = i~ P1~ 

+ ca~P0~

(lb) (u1 + ca1)P11 A
1
P01 + ccz2P12

(2a) 
~~2 

+ ccz2)P02 
— ~J~P12 +

(2b) 
~
‘2 
+ cct

2
)P12 

= A 2P02 + ca1P11

with

(3) P01 + P11 + P02 + P12 = 1

Let L(c) denote the proportion of customers lost to the system.

Since

~L(c) = A
1
P
1~ 

+

we can calculate L(c) by finding P11 and P12 . Before doing that

let us note that the proportion of time the system is in level 1 is

cx
(4) P +P — 

2
01 11 cx

1
+a 2

.-- . —.~~~~~ - 
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which can be obtained either by adding Cia) and (ib) together and sub—

stituting (3), or by considering the system as an alternating renewal

process. Similarly,

+ ~l2 
= 

a
1 
+ a

2

To solve for P11 and P12 , the easiest way is to put Cia), (ib)

in a matrix form as follows

+ ca
1
) —U

1 
P
01 

ca2P02
(6) =

+ ccx
1
) P11 cct2P12

Similarly, for (2a), (2b),

(A 2 + ca 2) —p 2 P02 ccx
1
P01

(7) =

—A~ ~~2 + ca2) P12 ccx
1
P11

Putting (6) and (7) together yields

(A
1 + ca1) (A 2 + ccx2) -U2 

P02 c2a
1
a
2
P02

(8) 
(U 1 

+ ca
1
) —A 2 (p~ + ca2) P12 

= 

c2cx1a2P12

From the first row of (8) we obtain

(c(a1A 2 + a2A 1) + A 2 (A 1 + p
1)J P 02 

= [c(a
1
p
2 + a2

p
1
) + p 2 (A 1 + p

1
))P 12

Therefore,

— -— —. ~~~~~~~~~~~~~~~~~~~ ~~~~~ —— ,- —~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~~~~~~~~~~~~ . ~~~~ --~~~~ 
.

~~~~ 
.
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P12 C(~1A 2 + a2X 1) + A 2 (A 1 + p

1
)

( 
~~~ c(a1p2 + a2

p
1
) + p~~(A~ +

Hence, by (5) and (9),

— 

a1 c (ct
1

A 2 + a2A 1) + A 2 (A 1 + p
1
)

~l2 
- a1 + a2 c [ ct1(A 2 + p2) + cs2(A 1 + p1)] + (A 1 + p

1)(A ~ + u2)

S and

- 

a
1 c(a

1
p
2 + a2p1) + p2(A 1 +

- . .
~ ~O2 

- a
1 
+ a

2 c[a 1(A 2 + p2) + a2 (X 1 + p
1
)] + (A

1 + p~~)(X
2 + p

2)

Due to the symmetry of the equations (la), (lb) and (2a), (2b), we see that

- 

a
2 c(cx

1A 2 + a2
A
1
) + A 1(A 2 +

~ll 
- a1 + a2 c(a 1(A 2 + + a~ (A 1 + p1)] + (A 1 + p

1) ( A ~ + U2)

- 

a
2 c(ct

1
p
2 
+ a

2
p
1) + +

~Ol 
— 
a
1 
+ a

2 
• 

c[a
1

(A 2 + p2) + a~ (A 1 + p
1)J + (A

1 + p
1

) (A ~ + U2)

k Thus we have

— 
c(a1A 2 + a2A 1

)2 
+ A~ a2 (A 2 + + A~a1(A 1 + U1)AL(c) — (a

1 
+ a2){c(cz1(A2 + u2) + a2 (A 1 + u1) ) + (A 1 + u1)(A 2 + p2)}

Differentiation yields that

— 
—a1a2 (A 1U 2 —

AL (c) — 
2+ a2){c[a1(A 2 + p 2) + a2~(k1 + iJ~~~)]  + (A 1 

+ U1
)(A

2 + 1.1
2

) )

andL~.
- . -, -~ ~~ -- ~~~~~~~~~~ ~~~~~~~~~~~~~ . _~~•~~

__
~~~~~ ~~~~~ -~~~~~~~ ~~~~~~~~~~~~~~~~~~
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~L’’(c) = 

2a
1
a2(A 1p2 

— A 2p1
)2[a

1
(X2 + ~~~ 

+ a2(A 1 +

(a1 + a2)(c[a1(A 2 + p2) + a2 (A 1 + U1
)] + (A1 + 

p
1

)(A 2 +

- . 

- There are 2 cases to consider

Case 1:

A
1
p~ 

— A~p 1 
= 0 , i.e., the traffic intensities A

1
/p
1 

and A 2/p 2

are equal, say to p

In this case L’(c) = 0 , and thus L(c) is independent of the value c

Moreover we have simple solutions for the 
~mi

’
~ 

in this case, namely

— 

a
2 1

~Ol 
— 

a1 
+ a2 1 + p

a
2 p

1’1 1 a
1
+a

2 1 + p

= 

a1 1
02 a1 +a 2

l + p

= 

a1 
_ _ _

12 a
1

+c t2 l + p

Hence, P
1 , 

the proportion of time the system is busy is 
. 

-

F
P
1

E P
11 +P 12

..
1~~~~~

and P
0 , 

the proportion of time the system is empty is

1Po~~
Pol +P o2 — 1 + p  .

,_

~

_

~

_

~

___

~
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In terms of P
0 

and P
1 , the system functions as an ordinary M/M/l loss

system with traffic intensity p . The loss function is found to be

— 
pL(c) — 

~ + ~

Case 2:

A 1p2 
— X 2p1 ~~ 0 .

In this case L’(c) < 0 and L’’(c) > 0 . Hence L(c) is a decreasing

convex function of the value c

S Therefore, if the ratio of the time the system stays at each level

is fixed, then the faster the system alternates between these two levels,

the better the system is (in terms of the loss function).

It.

- - -- .~~~~_
5 . ~~~~~~~~~~ - -—--- -_-~~~~~ ,—-~~~~~~~ S_~~-~~~~~~~~~~~ -~~~~~~~~~~~ . 5 5-
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2. EXTREME CASES
p

c- ‘ We have shown that L(c) is a strictly decreasing function of

c when the traffic intensities X
1
/p
1 

and A 2/p 2 are not equal.

Now let us study the two extreme cases: (1) c -
~ , i.e. the system

alternates extremely fast between level 1 and level 2 or equivalently,

the mean time the system stays at each level approaches 0; (2) c -+ 0

i.e. the system alternates extremely slowly between level 1 and level 2

or , equivalently, the mean time the system stays at each level is

becoming infinitely large.

.
5 

Case 1: c + m
- c.. .~1 -

— 
(a

1
A

2 ÷
A u r n  L(c) = 

(a
1 
+ a2) [a1 (A2 + U2) + cc2(A 1 + p1)]

implying that

lim L(c) = 
—

Furthermore, the proposition of time the system is busy can be

obtained by

P = him P
1 

+ u r n  =1 1 

--~~~~~~~-— - --~~-- -— — --- --~~~~ -~~~~~~~~ -—~~,-5-—— — . —  - - 5
-, —
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f and the proportion of time the system is idle is

P him P
01

+ lim P02 = U

Thus, the limiting system is equivalent to a no queue allowed M/M/l system

with constant arrival rate X and service rate p

Since L(c) is decreasing , the value 
— 

A — is the smallest value

the system can achieve for the loss function.

Case 2: c -~~O

- 
A~a2

(A
2 + + A~a1(A1 +A him L(c)  = 

~~l 
+ a2
) (A 1 + p1) (A2 + U2)

2 2
— 

a2 A
1 a1 

A
2

al + a 2 A
l
+ p

l
+
a1 +a 2

A
2 + 1 )

2

and the proportion of time the system is busy is

P1 
= 1i~ P11 + ~l2 

= 

a~~+ a2 ~~~~ 
A 1 

+ a1 + a2 ~~~~ 
A 2

the proportion of time the system is idle is

a2 U1 a1 
_______P

O
= l imP Ol + lim PO2 =

A +

Thus , the limiting system functions as the (time) average of two independent

M/M/h loss systems, one with arrival rate A
1 and service rate U

1

and the other with arrival rate A
2 and service rate U2

____  — mm - - —-- .~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~ _~_5-_- _~Si_5-_~
_ ~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~ ..~ ‘S’ ~SS-
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3. RIGHT AND WRONG ARRANGEMENTS

Let us assume A
1 

< A
2 

and 
~l 

< 

~2 
and compare the system R

with levels (X1,p1) , (A~~,i.i 2
) to the system W with levels (A 1,U2

)

(A 2,p1) under the condition a1 = . In other words , the system R

has the arrangement such that the server with slow service rate goes on

the shift with the slow arrival rate and the person with the fast service

- 
- rate goes on the shift with the fast arrival rate. The system W is

-
~~~ ~ arranged the other way around . If we denote the loss functions of the

I system R and W by LR and Lw respectively , then a simple algebraic

- computation yields that LR(c) < Lw(c) , and so the system R is better

S -~/ than the system W in the sense of loss function.

I

1- H - 

—— - — -_ j~~~~ _~~~_ s.~~~~~. ~~~~~~~ ‘ — k-~~~~~~M.L ~~~~~~~~~ . p~~.s - - ~~~~~ 
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